

Use the following information to answer the next 2 questions.

During a motor vehicle accident an unbelted passenger experienced a force which varied with time as shown on the graph.

1. Calculate the area of the shaded region in the graph.
2. What does this area represent?
3. What is an equivalent unit for impulse?
 - A. m/s
 - B. kg•m/s
 - C. kg•m/s²
 - D. N
4. A 3.0 kg frictionless puck is at rest on a level table. It is pushed straight north with a constant force for 1.50 s and then let go. The speed then is 5.0 m/s. The magnitude of the force which caused this change in motion was:
 - A. 10 N
 - B. 2.5 N
 - C. 22.5 N
 - D. 15 N
5. Which of the following is conserved for elastic collisions?
 - A. speed
 - B. kinetic energy
 - C. force
 - D. potential energy

Practice Ph12 2-2

6. Which of the following best represents the momentum of a small car travelling at a city speed limit?
 - A. 1 000 000 kgm/s
 - B. 1 000 kgm/s
 - C. 10 000 kgm/s
 - D. 100 000 kgm/s
7. The momentum of a male Olympic sprinter is about
 - A. 100 kg•m/s
 - B. 10 kg•m/s
 - C. 10 000 kg•m/s
 - D. 1000 kg•m/s
8. A stone falls off a cliff. Air friction is negligible. As the stone falls its momentum is
 - A. decreasing, then constant.
 - B. increasing, then constant.
 - C. increasing.
 - D. constant.
9. A 5.0 kg mass A, moving at 3.0 m/s to the right, has a head-on collision with a 2.0 kg mass B, moving 4.0 m/s to the left. The 2.0 kg mass bounces back with a velocity of 2.0 m/s to the right. Find the velocity of the 5.0 kg mass after impact.
10. A 0.05 kg bullet moving vertically upwards at 125 m/s hits a stationary 2.6 kg block hanging from a 5.00 m long string. Calculate the maximum height that the block reaches assuming that the bullet remains within the sandbag.