

1. Surrounding every moving electron is
 - A. an electric field
 - B. a magnetic field
 - C. both of the above
 - D. none of the above
2. The fact that a current carrying wire deflects a compass needle is evidence that
 - A. the current gives rise to a magnetic field
 - B. the wire is magnetized
 - C. the north pole of the earth has shifted
 - D. the compass needle has an electric charge on it
3. A metal bar MH is brought near the N pole of a compass needle as shown in the diagram. If the N pole is repelled, we may be sure that the bar MH is:

- A. a magnet and M is a S pole
- B. a magnet and M is a N pole
- C. made of iron, but not magnetized
- D. made of a non-magnetic material
- E. not made of iron, nickel or cobalt

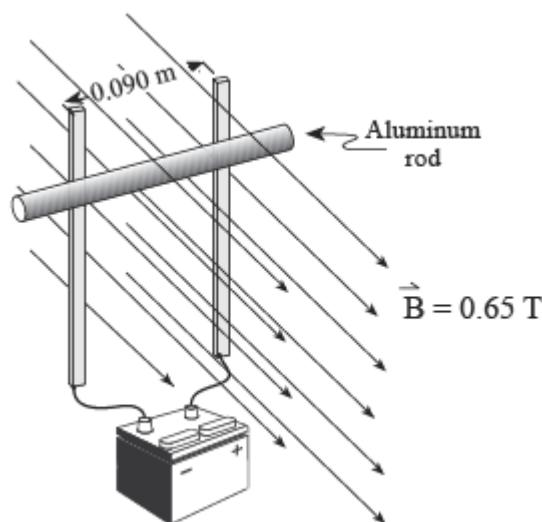
- 4. A compass is positioned at each of the following locations near a bar magnet.

In which location will the compass needle point to the right-hand side of the page?

- A. 4
- B. 1
- C. 2
- D. 3

5. What happens to the magnetic force on an electron moving perpendicular to the direction of a magnetic field if the speed of the electron increases?
 - A. the force decreases
 - B. the force increases
 - C. the force decreases, then increases
 - D. the force remains the same

Practice Ph12 5-1

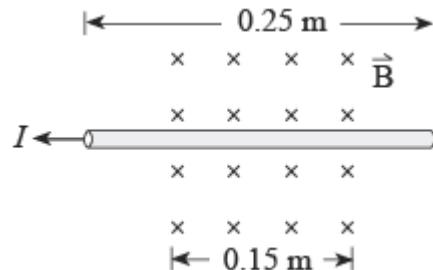

6. Which of the following is the force of deflection experienced by a moving charged particle in a uniform magnetic field independent of?

- mass of the particle
- charge of the particle
- magnetic field strength
- particle's velocity

7. A magnetic field with a strength of 5.0×10^{-2} T exists. Doubly-ionized helium atoms are projected into this field at a speed of 4.0×10^{-2} m/s at right angles to the field. What is the force that acts on each particle?

8. A current of 5.0 A flows through 40 cm of wire at right angles to a magnetic field causing a 8.0 N force on the wire. Find the strength of the magnetic field.

9. A 0.13 kg aluminum rod maintains contact with two vertical metal rails. A voltage is applied across the metal rails and a horizontal magnetic field of 0.65 T exists across the whole apparatus as shown.

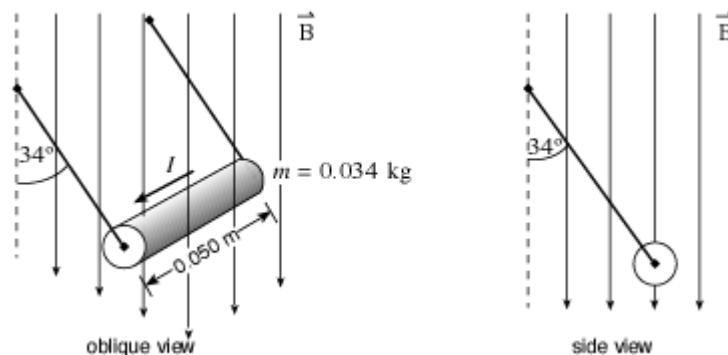

What current (in amps) must flow through the aluminum rod to have it remain stationary?

10. A piece of wire 0.40 m long is aligned at right angles to a constant, uniform magnetic field. When the wire carries a current of 5.0 A, it experiences a magnetic force of 0.80 N. What is the strength of the magnetic field?

- 2.5 T
- 2.5×10^{-6} T
- 0.40 T
- 1.6 T

Practice Ph12 5-1

11. A wire carrying 12 A of current is placed in a magnetic field of strength 0.63 T.

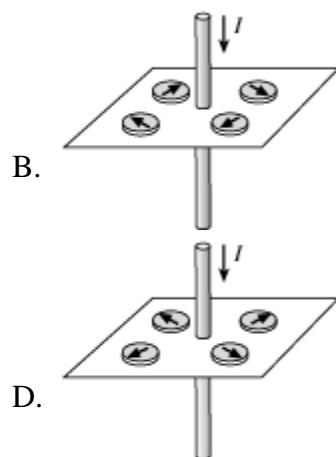
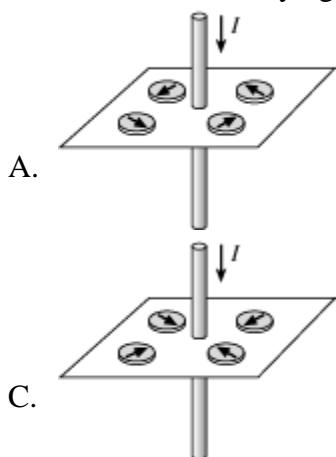


What are the magnitude and direction of the magnetic force acting on the wire?

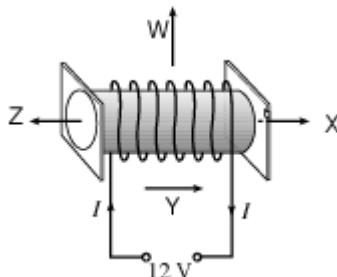
FORCE DIRECTION

- A. 1.1 N up the page
- B. 1.1 N down the page
- C. 1.9 N up the page
- D. 1.9 N down the page

12. A 0.034 kg copper rod is hung by two wires and placed in a constant magnetic field. A current of 14 A runs through the 0.050 m long copper rod, making it hang at an angle of 34° from the vertical as shown below.

What is the magnetic field strength holding the copper rod in this position?

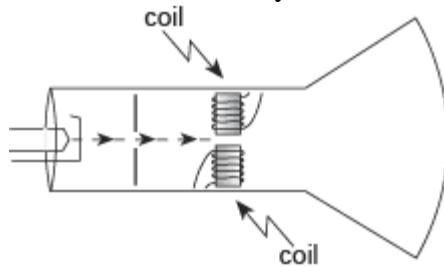

- A. 4.8×10^{-1} T
- B. 3.9×10^{-1} T
- C. 3.2×10^{-1} T
- D. 2.7×10^{-1} T

Practice Ph12 5-1

13. Which of the following diagrams best shows the orientation for a set of four compasses placed around a current-carrying wire?

14. Which of the four arrows indicates the direction of the magnetic field when current flows in the solenoid shown below?

A. Z
 B. Y
 C. X
 D. W


15. Determine the direction of the magnetic force on the current-carrying conductor in the diagram below.

A. Towards the bottom of the page
 B. Towards the left
 C. Towards the right
 D. Towards the top of the page

Practice Ph12 5-1

16. The diagram below represents a cross-sectional view from the side of a cathode ray tube. What is the purpose of the coils in a functional cathode ray tube?

- A. They deflect the electrons toward the top or bottom of the page.
- B. They increase the speed of the electrons
- C. They focus the electrons into a fine beam.
- D. They deflect the electrons into or out of the page.