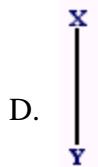
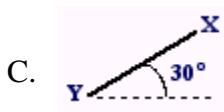
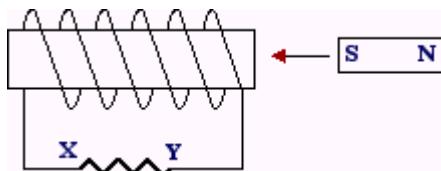


- What is the EMF induced between the ends of a 12 cm wire which is moved at 84 m/s at 90° to a magnetic field of 4.5×10^{-3} T caused by a current of 5.2 A in a solenoid?
 - 4.5×10^{-2} V
 - 6.0×10^{-20} V
 - 2.8×10^{-3} V
 - 4.5 V
- Which of the following is generated by an electric field that is changing with time?
 - direct current
 - uniform current
 - changing magnetic field
 - permanent magnetic field

3.


The above diagram shows the top of a rectangular coil which is rotated clockwise at a constant rate between two magnetic poles. In which of the following positions will the emf induced across the coil be maximum?

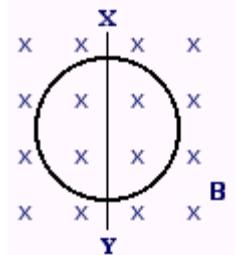
B.

- When the magnet is moved to the left towards the inside center of the coil the current through the resistor is

- from Y to X
- from X to Y
- alternating
- zero

Practice Ph12 5-3

5. Which of the following is a correct unit for magnetic flux?

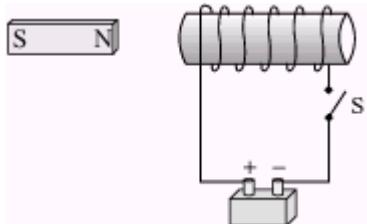

- A. Tesla
- B. Newtons/Coulomb
- C. Tesla meter²
- D. Volts

6. The voltage induced when a coil moves across a magnetic field is determined by?

- A. the change in the magnetic flux.
- B. the number of turns in the coil.
- C. the current in the coil.
- D. the number of turns and the rate of change of magnetic flux.

7. The diagram below shows a singular circular coil of wire in a constant, uniform magnetic field

B. In the position shown, the magnetic flux through the coil is 4.5×10^{-4} Wb. If the coil now rotates 90° about axis XY in a time of 0.125 s, what average EMF is generated between the ends of the coil during that time?


A. 3.6×10^{-3} V

B. zero

C. 5.6×10^{-5} V

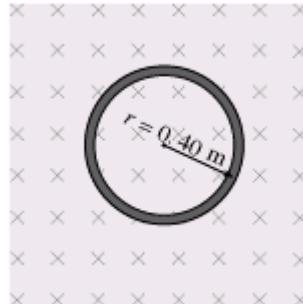
D. 9.0×10^{-4} V

8. A bar magnet is at rest, next to a fixed coil. When switch S is closed, the bar magnet will move

- A. down the page.
- B. to the left.
- C. to the right.
- D. up the page.

Practice Ph12 5-3

9. The circular loop of wire shown below has an area of 0.40 m^2 and is in a 0.60 T magnetic field. This field is increased to 1.40 T in 0.25 s .



Determine the emf produced in the loop and the direction of current.

Emf (V) Direction of Current

A. 1.3	counter-clockwise
B. 1.3	clockwise
C. 3.2	counter-clockwise
D. 3.2	clockwise

10. A coil of wire containing 50 loops is lying on a flat surface in a 0.60 T magnetic field pointing directly into the surface.

The magnetic field then changes to a value of 0.10 T in the opposite direction in 2.10 s . What is the average emf induced in the coil during the time that the magnetic field was changing?